diff --git a/ACL_PyTorch/built-in/audio/RawNet2_for_Pytorch/acl_net.py b/ACL_PyTorch/built-in/audio/RawNet2_for_Pytorch/acl_net.py index b39eb3530ccc10c2b45808793365744d03ef20a6..69f1ab160a061b11921b6c7e715504ecd3c43544 100644 --- a/ACL_PyTorch/built-in/audio/RawNet2_for_Pytorch/acl_net.py +++ b/ACL_PyTorch/built-in/audio/RawNet2_for_Pytorch/acl_net.py @@ -157,12 +157,9 @@ class Net(object): for i, item in enumerate(temp_data_buffer): if policy == ACL_MEMCPY_HOST_TO_DEVICE: - ptr = acl.util.numpy_to_ptr(dataset[i]) - ret = acl.rt.memcpy(item["buffer"], - item["size"], - ptr, - item["size"], - policy) + bytes_in = dataset[i].tobytes() + ptr = acl.util.bytes_to_ptr(bytes_in) + ret = acl.rt.memcpy(item["buffer"], item["size"], ptr, item["size"], policy) check_ret("acl.rt.memcpy", ret) else: @@ -252,7 +249,7 @@ class Net(object): size = output_data[i]["size"] ptr = output_data[i]["buffer"] - data = acl.util.ptr_to_numpy(ptr, (size,), 1) + data = acl.util.ptr_to_bytes(ptr, size) np_arr = np.frombuffer(bytearray(data[:data_len * ftype.itemsize]), dtype=ftype, count=data_len) np_arr = np_arr.reshape(data_shape) dataset.append(np_arr) diff --git a/ACL_PyTorch/built-in/cv/Yolov5_for_Pytorch/acl_net.py b/ACL_PyTorch/built-in/cv/Yolov5_for_Pytorch/acl_net.py index cd9e01ea0cf35923eeca555c4b9baabeffa9d6d6..8ce8d68b0afe7798dd5dcfe9257d526c59427a05 100644 --- a/ACL_PyTorch/built-in/cv/Yolov5_for_Pytorch/acl_net.py +++ b/ACL_PyTorch/built-in/cv/Yolov5_for_Pytorch/acl_net.py @@ -158,7 +158,8 @@ class Net(object): for i, item in enumerate(temp_data_buffer): if policy == ACL_MEMCPY_HOST_TO_DEVICE: - ptr = acl.util.numpy_to_ptr(dataset[i]) + bytes_in = dataset[i].tobytes() + ptr = acl.util.bytes_to_ptr(bytes_in) ret = acl.rt.memcpy(item["buffer"], item["size"], ptr, item["size"], policy) check_ret("acl.rt.memcpy", ret) @@ -241,7 +242,7 @@ class Net(object): size = output_data[i]["size"] ptr = output_data[i]["buffer"] - data = acl.util.ptr_to_numpy(ptr, (size,), 1) + data = acl.util.ptr_to_bytes(ptr, size) np_array = np.frombuffer(bytearray(data[:data_len * ftype.itemsize]), dtype=ftype, count=data_len) np_array = np_array.reshape(data_shape) dataset.append(np_array) diff --git a/ACL_PyTorch/built-in/cv/Yolov5_for_Pytorch/modify_model.py b/ACL_PyTorch/built-in/cv/Yolov5_for_Pytorch/modify_model.py index 05ede57e36a92ea2f1ad826ea6d680164b32fac8..e29882d005e2ec521bd8cd496b9ff784f7b84ae1 100644 --- a/ACL_PyTorch/built-in/cv/Yolov5_for_Pytorch/modify_model.py +++ b/ACL_PyTorch/built-in/cv/Yolov5_for_Pytorch/modify_model.py @@ -91,7 +91,7 @@ def main(args): model.graph.output.append(box_out) model.graph.output.append(box_out_num) - onnx.save(model, model_path.split('.')[0] + "_t.onnx") + onnx.save(model, model_path.split('.onnx')[0] + "_t.onnx") print("success")