# senpai **Repository Path**: ctyun-os-kernel/senpai ## Basic Information - **Project Name**: senpai - **Description**: No description available - **Primary Language**: Unknown - **License**: GPL-2.0 - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-03-03 - **Last Updated**: 2024-03-03 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Senpai Senpai is an automated memory sizing tool for container applications. ## Background Determining the exact amount of memory required by an application (the *workingset size*) is a difficult, error-prone task. Libraries and code pages used during startup are loaded into memory only to be never touched again afterwards. On top of that, the Linux filesystem cache doesn't kick out cold data until that memory is required for new data. ***Allocated* memory is not a good proxy for *required* memory**. This makes it difficult to provision memory correctly and maintain adequate safety margins: Too little, and the applications experience thrashing or out-of-memory kills during load peaks; too much, and costly hardware resources are being wasted. Senpai is a userspace tool that determines the actual memory requirement of containerized applications. Using Linux psi metrics and cgroup2 memory limits, senpai applies just enough memory pressure on a container to page out the cold and unused memory pages that aren't necessary for nominal workload performance. It dynamically adapts to load peaks and troughs, and so provides a workingset profile of an application over time. This information helps system operators eliminate waste, shore up for contingencies, optimize task placement in compute grids, and plan long-term capacity/hardware requirements. ## Examples An example kernel compile job has a peak memory consumption of 800M: $ time make -j4 -s real 3m58.050s user 13m33.735s sys 1m30.130s $ sort -n memory.current-nolimit.log | tail -n 1 803934208 However, when a memory limit of 600M is applied, the job finishes in the same amount of time - with 25% less available memory: # echo 600M > memory.high $ time make -j4 -s real 4m0.654s user 13m28.493s sys 1m31.509s $ sort -n memory.current-600M.log | tail -n 1 629116928 Clearly, the full 800M aren't required. But 600M still has an unknown amount of slack - even a 400M limit doesn't materially affect runtime: # echo 400M > memory.high $ time make -j4 -s real 4m3.186s user 13m20.452s sys 1m31.085s $ sort -n memory.current-400M.log | tail -n 1 419368960 At 300M, on the other hand, the workload struggles to make forward progress and finish within a reasonable amount of time: # echo 300M > memory.high $ time make -j4 -s ^C real 9m9.974s user 10m59.315s sys 1m16.576s Finding the exact cutoff where job performance begins to plummet is a tedious trial-and-error process. It also only works when the job does a fixed amount of work every time it runs, like in this example, but that isn't true for many datacenter services that run indefinitely and process highly variable user input. Senpai determines the memory requirement of an application while the application is running: # senpai . 2019-08-19 14:26:05 Configuration: 2019-08-19 14:26:05 cgpath = /sys/fs/cgroup/kernelbuild 2019-08-19 14:26:05 min_size = 104857600 2019-08-19 14:26:05 max_size = 107374182400 2019-08-19 14:26:05 interval = 5 2019-08-19 14:26:05 pressure = 1000 2019-08-19 14:26:05 max_probe = 0.01 2019-08-19 14:26:05 max_backoff = 0.1 2019-08-19 14:26:05 log_probe = 1000 2019-08-19 14:26:05 log_backoff = 10 2019-08-19 14:26:05 Resetting limit to memory.current. 2019-08-19 14:26:06 limit=100.00M pressure=0.000000 time_to_probe= 6 total=117669927 delta=0 integral=0 2019-08-19 14:26:07 limit=100.00M pressure=0.000000 time_to_probe= 5 total=117669927 delta=0 integral=0 2019-08-19 14:26:08 limit=100.00M pressure=0.000000 time_to_probe= 4 total=117669927 delta=0 integral=0 $ time make -j4 -s 2019-08-19 14:26:09 limit=100.00M pressure=0.000000 time_to_probe= 3 total=117678359 delta=8432 integral=8432 2019-08-19 14:26:09 backoff: 0.09259305978684715 2019-08-19 14:26:10 limit=109.26M pressure=0.180000 time_to_probe= 5 total=117719536 delta=41177 integral=41177 2019-08-19 14:26:10 backoff: 0.1 2019-08-19 14:26:11 limit=120.18M pressure=0.180000 time_to_probe= 5 total=117768197 delta=48661 integral=48661 ... 2019-08-19 14:26:43 limit=340.48M pressure=0.160000 time_to_probe= 5 total=118045638 delta=202 integral=202 2019-08-19 14:26:44 limit=340.48M pressure=0.130000 time_to_probe= 4 total=118045638 delta=0 integral=202 2019-08-19 14:26:45 limit=340.48M pressure=0.130000 time_to_probe= 3 total=118045638 delta=0 integral=202 2019-08-19 14:26:46 limit=340.48M pressure=0.110000 time_to_probe= 2 total=118045638 delta=0 integral=202 2019-08-19 14:26:47 limit=340.48M pressure=0.110000 time_to_probe= 1 total=118045690 delta=52 integral=254 2019-08-19 14:26:48 limit=340.48M pressure=0.090000 time_to_probe= 0 total=118045690 delta=0 integral=254 2019-08-19 14:26:48 probe: -0.001983887611266873 2019-08-19 14:26:49 limit=339.80M pressure=0.090000 time_to_probe= 5 total=118045690 delta=0 integral=0 ... real 4m9.420s user 13m21.723s sys 1m33.037s $ sort -n memory.current-senpai.log | tail -n 1 347762688 ## Requirements * Linux v4.20 or up with CONFIG_PSI=y * python3 ## License senpai is GPL v2.0 licensed, as found in the LICENSE file.