diff --git a/README.md b/README.md index f0aa39f93bb186676d8415492b1289bf4ae272d0..a210b794630a054260e906a0e3aff1379347714b 100644 --- a/README.md +++ b/README.md @@ -178,8 +178,8 @@ DeepSparkHub甄选上百个应用算法和模型,覆盖AI和通用计算各领 [ContextNet](cv/semantic_segmentation/contextnet/pytorch/README.md) | PyTorch | COCO [DabNet](cv/semantic_segmentation/dabnet/pytorch/README.md) | PyTorch | COCO [DANet](cv/semantic_segmentation/danet/pytorch/README.md) | PyTorch | COCO -[DeepLab](cv/semantic_segmentation/deeplabv3/pytorch/README.md) | PyTorch | COCO -[DeepLab](cv/semantic_segmentation/deeplabv3/paddlepaddle/README.md) | PaddlePaddle | Cityscapes +[DeepLabV3](cv/semantic_segmentation/deeplabv3/pytorch/README.md) | PyTorch | COCO +[DeepLabV3](cv/semantic_segmentation/deeplabv3/paddlepaddle/README.md) | PaddlePaddle | Cityscapes [DeepLabV3](cv/semantic_segmentation/deeplabv3/MindSpore/README.md) | MindSpore | VOC [DeepLabV3+](cv/semantic_segmentation/deeplabv3plus/paddlepaddle/README.md) | PaddlePaddle | Cityscapes [DenseASPP](cv/semantic_segmentation/denseaspp/pytorch/README.md) | PyTorch | COCO @@ -316,7 +316,7 @@ DeepSparkHub甄选上百个应用算法和模型,覆盖AI和通用计算各领 模型名称 | 框架 | 数据集 -------- | ------ | ---- -[Conformer](speech/speech_recognition/conformer/pytorch/README.md) | PyTorch | LJSpeech-1.1 +[Conformer](speech/speech_recognition/conformer/pytorch/README.md) | PyTorch | AISHELL [RNN-T](speech/speech_recognition/rnnt/pytorch/README.md) | PyTorch | LJSpeech diff --git a/cv/semantic_segmentation/deeplabv3/paddlepaddle/README.md b/cv/semantic_segmentation/deeplabv3/paddlepaddle/README.md index c8043bbd8264bda5c7a8929dab65e9f2e3f93aff..b4550c358c1ec0ceebb3456a4e4b65fa5f5aae7d 100644 --- a/cv/semantic_segmentation/deeplabv3/paddlepaddle/README.md +++ b/cv/semantic_segmentation/deeplabv3/paddlepaddle/README.md @@ -1,8 +1,8 @@ -# DeepLab +# DeepLabV3 ## Model description -DeepLabv3 is a semantic segmentation architecture that improves upon DeepLabv2 with several modifications. +DeepLabV3 is a semantic segmentation architecture that improves upon DeepLabV2 with several modifications. To handle the problem of segmenting objects at multiple scales, modules are designed which employ atrous convolution in cascade or in parallel to capture multi-scale context by adopting multiple atrous rates. ## Step 1: Installing @@ -40,7 +40,7 @@ drwxr-xr-x 5 root root 58 Jul 18 03:30 leftImg8bit -rw-r--r-- 1 root root 65900 Jul 18 03:32 val.txt ``` -## Step 3: Run DeepLab +## Step 3: Run DeepLabV3 ```bash # Make sure your dataset path is the same as above diff --git a/cv/semantic_segmentation/deeplabv3/pytorch/README.md b/cv/semantic_segmentation/deeplabv3/pytorch/README.md index ebc4d2d639122fb35d28b723004f06ed155a1708..9d6fbdd369a03a3ac231edd66afc9b5d85d2454e 100644 --- a/cv/semantic_segmentation/deeplabv3/pytorch/README.md +++ b/cv/semantic_segmentation/deeplabv3/pytorch/README.md @@ -1,8 +1,8 @@ -# DeepLab +# DeepLabV3 ## Model description -DeepLabv3 is a semantic segmentation architecture that improves upon DeepLabv2 with several modifications. +DeepLabV3 is a semantic segmentation architecture that improves upon DeepLabV2 with several modifications. To handle the problem of segmenting objects at multiple scales, modules are designed which employ atrous convolution in cascade or in parallel to capture multi-scale context by adopting multiple atrous rates. ## Step 1: Installing