diff --git a/multimodal/diffusion/stable-diffusion/diffusers/run_sd3_dreambooth.sh b/multimodal/diffusion/stable-diffusion/diffusers/run_sd3_dreambooth.sh new file mode 100755 index 0000000000000000000000000000000000000000..6903794d4f3130069c914b6f93b023c2e3399937 --- /dev/null +++ b/multimodal/diffusion/stable-diffusion/diffusers/run_sd3_dreambooth.sh @@ -0,0 +1,44 @@ +# Copyright (c) 2024, Shanghai Iluvatar CoreX Semiconductor Co., Ltd. +# All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); you may +# not use this file except in compliance with the License. You may obtain +# a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +# License for the specific language governing permissions and limitations +# under the License. + +export CLIP_FLASH_ATTN=1 +export USE_NHWC_GN=1 +export USE_IXFORMER_GEGLU=1 +export USE_APEX_LN=1 +export USE_NATIVE_ATTN=0 +export ENABLE_FLASH_ATTENTION_WITH_IXDNN=1 +export ENABLE_FLASH_ATTENTION_WITH_HEAD_DIM_PADDING=1 + + +export MODEL_PATH=${MODEL_PATH:-stabilityai/stable-diffusion-3-medium-diffusers} +export DATASET_PATH=${DATASET_PATH:-diffusers/dog-example} +export OUTPUT_DIR="trained-sd3" + +accelerate launch --main_process_port 29501 --config_file configs/zero2_config.yaml --mixed_precision="fp16" train_dreambooth_sd3.py \ + --pretrained_model_name_or_path=$MODEL_PATH \ + --instance_data_dir=$DATASET_PATH \ + --output_dir=$OUTPUT_DIR \ + --instance_prompt="a photo of sks dog" \ + --resolution=512 \ + --train_batch_size=1 \ + --gradient_accumulation_steps=4 \ + --learning_rate=1e-4 \ + --lr_scheduler="constant" \ + --lr_warmup_steps=0 \ + --max_train_steps=100 \ + --validation_epochs=25 \ + --seed="0" \ + --NHWC \ + --apex_fused_adam diff --git a/multimodal/diffusion/stable-diffusion/diffusers/train_dreambooth_sd3.py b/multimodal/diffusion/stable-diffusion/diffusers/train_dreambooth_sd3.py new file mode 100755 index 0000000000000000000000000000000000000000..7b6c4b158feeec23601c23600ec15e5b978ed6ee --- /dev/null +++ b/multimodal/diffusion/stable-diffusion/diffusers/train_dreambooth_sd3.py @@ -0,0 +1,1831 @@ +#!/usr/bin/env python +# coding=utf-8 +# Copyright 2024 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and + +# Copyright (c) 2023, Shanghai Iluvatar CoreX Semiconductor Co., Ltd. +# All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); you may +# not use this file except in compliance with the License. You may obtain +# a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +# License for the specific language governing permissions and limitations +# under the License. + +import argparse +import copy +import gc +import itertools +import logging +import math +import os +import random +import shutil +import warnings +from contextlib import nullcontext +from pathlib import Path +import time + +import numpy as np +import torch +import torch.utils.checkpoint +import transformers +import accelerate +from accelerate import Accelerator +from accelerate.logging import get_logger +from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed +from huggingface_hub import create_repo, upload_folder +from huggingface_hub.utils import insecure_hashlib +from PIL import Image +from PIL.ImageOps import exif_transpose +from torch.utils.data import Dataset +from torchvision import transforms +from torchvision.transforms.functional import crop +from tqdm.auto import tqdm +from transformers import CLIPTextModelWithProjection, CLIPTokenizer, PretrainedConfig, T5EncoderModel, T5TokenizerFast + +import diffusers +from diffusers import ( + AutoencoderKL, + FlowMatchEulerDiscreteScheduler, + SD3Transformer2DModel, + StableDiffusion3Pipeline, +) +from diffusers.optimization import get_scheduler +from diffusers.utils import ( + check_min_version, + is_wandb_available, +) +from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card +from diffusers.utils.torch_utils import is_compiled_module + +from accelerate.state import AcceleratorState +from transformers.utils import ContextManagers + + +if is_wandb_available(): + import wandb + +# Will error if the minimal version of diffusers is not installed. Remove at your own risks. +check_min_version("0.29.0") + +logger = get_logger(__name__) + + +def save_model_card( + repo_id: str, + images=None, + base_model: str = None, + train_text_encoder=False, + instance_prompt=None, + validation_prompt=None, + repo_folder=None, +): + widget_dict = [] + if images is not None: + for i, image in enumerate(images): + image.save(os.path.join(repo_folder, f"image_{i}.png")) + widget_dict.append( + {"text": validation_prompt if validation_prompt else " ", "output": {"url": f"image_{i}.png"}} + ) + + model_description = f""" +# SD3 DreamBooth - {repo_id} + + + +## Model description + +These are {repo_id} DreamBooth weights for {base_model}. + +The weights were trained using [DreamBooth](https://dreambooth.github.io/). + +Text encoder was fine-tuned: {train_text_encoder}. + +## Trigger words + +You should use {instance_prompt} to trigger the image generation. + +## Download model + +[Download]({repo_id}/tree/main) them in the Files & versions tab. + +## License + +Please adhere to the licensing terms as described `[here](https://huggingface.co/stabilityai/stable-diffusion-3-medium/blob/main/LICENSE)`. +""" + model_card = load_or_create_model_card( + repo_id_or_path=repo_id, + from_training=True, + license="openrail++", + base_model=base_model, + prompt=instance_prompt, + model_description=model_description, + widget=widget_dict, + ) + tags = [ + "text-to-image", + "diffusers-training", + "diffusers", + "sd3", + "sd3-diffusers", + "template:sd-lora", + ] + + model_card = populate_model_card(model_card, tags=tags) + model_card.save(os.path.join(repo_folder, "README.md")) + + +def load_text_encoders(class_one, class_two, class_three): + text_encoder_one = class_one.from_pretrained( + args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant + ) + text_encoder_two = class_two.from_pretrained( + args.pretrained_model_name_or_path, subfolder="text_encoder_2", revision=args.revision, variant=args.variant + ) + text_encoder_three = class_three.from_pretrained( + args.pretrained_model_name_or_path, subfolder="text_encoder_3", revision=args.revision, variant=args.variant + ) + return text_encoder_one, text_encoder_two, text_encoder_three + + +def log_validation( + pipeline, + args, + accelerator, + pipeline_args, + epoch, + is_final_validation=False, +): + logger.info( + f"Running validation... \n Generating {args.num_validation_images} images with prompt:" + f" {args.validation_prompt}." + ) + pipeline = pipeline.to(accelerator.device) + pipeline.set_progress_bar_config(disable=True) + + # run inference + generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None + # autocast_ctx = torch.autocast(accelerator.device.type) if not is_final_validation else nullcontext() + autocast_ctx = nullcontext() + + with autocast_ctx: + images = [pipeline(**pipeline_args, generator=generator).images[0] for _ in range(args.num_validation_images)] + + for tracker in accelerator.trackers: + phase_name = "test" if is_final_validation else "validation" + if tracker.name == "tensorboard": + np_images = np.stack([np.asarray(img) for img in images]) + tracker.writer.add_images(phase_name, np_images, epoch, dataformats="NHWC") + if tracker.name == "wandb": + tracker.log( + { + phase_name: [ + wandb.Image(image, caption=f"{i}: {args.validation_prompt}") for i, image in enumerate(images) + ] + } + ) + + del pipeline + if torch.cuda.is_available(): + torch.cuda.empty_cache() + + return images + + +def import_model_class_from_model_name_or_path( + pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder" +): + text_encoder_config = PretrainedConfig.from_pretrained( + pretrained_model_name_or_path, subfolder=subfolder, revision=revision + ) + model_class = text_encoder_config.architectures[0] + if model_class == "CLIPTextModelWithProjection": + from transformers import CLIPTextModelWithProjection + + return CLIPTextModelWithProjection + elif model_class == "T5EncoderModel": + from transformers import T5EncoderModel + + return T5EncoderModel + else: + raise ValueError(f"{model_class} is not supported.") + + +def parse_args(input_args=None): + parser = argparse.ArgumentParser(description="Simple example of a training script.") + parser.add_argument( + "--pretrained_model_name_or_path", + type=str, + default=None, + required=True, + help="Path to pretrained model or model identifier from huggingface.co/models.", + ) + parser.add_argument( + "--revision", + type=str, + default=None, + required=False, + help="Revision of pretrained model identifier from huggingface.co/models.", + ) + parser.add_argument( + "--variant", + type=str, + default=None, + help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16", + ) + parser.add_argument( + "--dataset_name", + type=str, + default=None, + help=( + "The name of the Dataset (from the HuggingFace hub) containing the training data of instance images (could be your own, possibly private," + " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem," + " or to a folder containing files that 🤗 Datasets can understand." + ), + ) + parser.add_argument( + "--dataset_config_name", + type=str, + default=None, + help="The config of the Dataset, leave as None if there's only one config.", + ) + parser.add_argument( + "--instance_data_dir", + type=str, + default=None, + help=("A folder containing the training data. "), + ) + + parser.add_argument( + "--cache_dir", + type=str, + default=None, + help="The directory where the downloaded models and datasets will be stored.", + ) + + parser.add_argument( + "--image_column", + type=str, + default="image", + help="The column of the dataset containing the target image. By " + "default, the standard Image Dataset maps out 'file_name' " + "to 'image'.", + ) + parser.add_argument( + "--caption_column", + type=str, + default=None, + help="The column of the dataset containing the instance prompt for each image", + ) + + parser.add_argument("--repeats", type=int, default=1, help="How many times to repeat the training data.") + + parser.add_argument( + "--class_data_dir", + type=str, + default=None, + required=False, + help="A folder containing the training data of class images.", + ) + parser.add_argument( + "--instance_prompt", + type=str, + default=None, + required=True, + help="The prompt with identifier specifying the instance, e.g. 'photo of a TOK dog', 'in the style of TOK'", + ) + parser.add_argument( + "--class_prompt", + type=str, + default=None, + help="The prompt to specify images in the same class as provided instance images.", + ) + parser.add_argument( + "--validation_prompt", + type=str, + default=None, + help="A prompt that is used during validation to verify that the model is learning.", + ) + parser.add_argument( + "--num_validation_images", + type=int, + default=4, + help="Number of images that should be generated during validation with `validation_prompt`.", + ) + parser.add_argument( + "--validation_epochs", + type=int, + default=50, + help=( + "Run dreambooth validation every X epochs. Dreambooth validation consists of running the prompt" + " `args.validation_prompt` multiple times: `args.num_validation_images`." + ), + ) + parser.add_argument( + "--with_prior_preservation", + default=False, + action="store_true", + help="Flag to add prior preservation loss.", + ) + parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.") + parser.add_argument( + "--num_class_images", + type=int, + default=100, + help=( + "Minimal class images for prior preservation loss. If there are not enough images already present in" + " class_data_dir, additional images will be sampled with class_prompt." + ), + ) + parser.add_argument( + "--output_dir", + type=str, + default="sd3-dreambooth", + help="The output directory where the model predictions and checkpoints will be written.", + ) + parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") + parser.add_argument( + "--resolution", + type=int, + default=512, + help=( + "The resolution for input images, all the images in the train/validation dataset will be resized to this" + " resolution" + ), + ) + parser.add_argument( + "--center_crop", + default=False, + action="store_true", + help=( + "Whether to center crop the input images to the resolution. If not set, the images will be randomly" + " cropped. The images will be resized to the resolution first before cropping." + ), + ) + parser.add_argument( + "--random_flip", + action="store_true", + help="whether to randomly flip images horizontally", + ) + parser.add_argument( + "--train_text_encoder", + action="store_true", + help="Whether to train the text encoder. If set, the text encoder should be float32 precision.", + ) + parser.add_argument( + "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." + ) + parser.add_argument( + "--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images." + ) + parser.add_argument("--num_train_epochs", type=int, default=1) + parser.add_argument( + "--max_train_steps", + type=int, + default=None, + help="Total number of training steps to perform. If provided, overrides num_train_epochs.", + ) + parser.add_argument( + "--checkpointing_steps", + type=int, + default=500, + help=( + "Save a checkpoint of the training state every X updates. These checkpoints can be used both as final" + " checkpoints in case they are better than the last checkpoint, and are also suitable for resuming" + " training using `--resume_from_checkpoint`." + ), + ) + parser.add_argument( + "--checkpoints_total_limit", + type=int, + default=None, + help=("Max number of checkpoints to store."), + ) + parser.add_argument( + "--resume_from_checkpoint", + type=str, + default=None, + help=( + "Whether training should be resumed from a previous checkpoint. Use a path saved by" + ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' + ), + ) + parser.add_argument( + "--gradient_accumulation_steps", + type=int, + default=1, + help="Number of updates steps to accumulate before performing a backward/update pass.", + ) + parser.add_argument( + "--gradient_checkpointing", + action="store_true", + help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", + ) + parser.add_argument( + "--learning_rate", + type=float, + default=1e-4, + help="Initial learning rate (after the potential warmup period) to use.", + ) + + parser.add_argument( + "--text_encoder_lr", + type=float, + default=5e-6, + help="Text encoder learning rate to use.", + ) + parser.add_argument( + "--scale_lr", + action="store_true", + default=False, + help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", + ) + parser.add_argument( + "--lr_scheduler", + type=str, + default="constant", + help=( + 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' + ' "constant", "constant_with_warmup"]' + ), + ) + parser.add_argument( + "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." + ) + parser.add_argument( + "--lr_num_cycles", + type=int, + default=1, + help="Number of hard resets of the lr in cosine_with_restarts scheduler.", + ) + parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.") + parser.add_argument( + "--dataloader_num_workers", + type=int, + default=0, + help=( + "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." + ), + ) + parser.add_argument( + "--weighting_scheme", type=str, default="sigma_sqrt", choices=["sigma_sqrt", "logit_normal", "mode"] + ) + parser.add_argument("--logit_mean", type=float, default=0.0) + parser.add_argument("--logit_std", type=float, default=1.0) + parser.add_argument("--mode_scale", type=float, default=1.29) + parser.add_argument( + "--optimizer", + type=str, + default="AdamW", + help=('The optimizer type to use. Choose between ["AdamW", "prodigy"]'), + ) + + parser.add_argument( + "--use_8bit_adam", + action="store_true", + help="Whether or not to use 8-bit Adam from bitsandbytes. Ignored if optimizer is not set to AdamW", + ) + + parser.add_argument( + "--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam and Prodigy optimizers." + ) + parser.add_argument( + "--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam and Prodigy optimizers." + ) + parser.add_argument( + "--prodigy_beta3", + type=float, + default=None, + help="coefficients for computing the Prodidy stepsize using running averages. If set to None, " + "uses the value of square root of beta2. Ignored if optimizer is adamW", + ) + parser.add_argument("--prodigy_decouple", type=bool, default=True, help="Use AdamW style decoupled weight decay") + parser.add_argument("--adam_weight_decay", type=float, default=1e-04, help="Weight decay to use for unet params") + parser.add_argument( + "--adam_weight_decay_text_encoder", type=float, default=1e-03, help="Weight decay to use for text_encoder" + ) + + parser.add_argument( + "--adam_epsilon", + type=float, + default=1e-08, + help="Epsilon value for the Adam optimizer and Prodigy optimizers.", + ) + + parser.add_argument( + "--prodigy_use_bias_correction", + type=bool, + default=True, + help="Turn on Adam's bias correction. True by default. Ignored if optimizer is adamW", + ) + parser.add_argument( + "--prodigy_safeguard_warmup", + type=bool, + default=True, + help="Remove lr from the denominator of D estimate to avoid issues during warm-up stage. True by default. " + "Ignored if optimizer is adamW", + ) + parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") + parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") + parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") + parser.add_argument( + "--hub_model_id", + type=str, + default=None, + help="The name of the repository to keep in sync with the local `output_dir`.", + ) + parser.add_argument( + "--logging_dir", + type=str, + default="logs", + help=( + "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" + " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." + ), + ) + parser.add_argument( + "--allow_tf32", + action="store_true", + help=( + "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" + " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" + ), + ) + parser.add_argument( + "--report_to", + type=str, + default="tensorboard", + help=( + 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' + ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' + ), + ) + parser.add_argument( + "--mixed_precision", + type=str, + default=None, + choices=["no", "fp16", "bf16"], + help=( + "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" + " 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" + " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." + ), + ) + parser.add_argument( + "--prior_generation_precision", + type=str, + default=None, + choices=["no", "fp32", "fp16", "bf16"], + help=( + "Choose prior generation precision between fp32, fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" + " 1.10.and an Nvidia Ampere GPU. Default to fp16 if a GPU is available else fp32." + ), + ) + parser.add_argument( + "--NHWC", + action="store_true", + help="Whether or not using NHWC for training", + ) + parser.add_argument( + "--apex_fused_adam", + action="store_true", + help="Whether or not using fused_adam optimizer", + ) + parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") + + if input_args is not None: + args = parser.parse_args(input_args) + else: + args = parser.parse_args() + + if args.dataset_name is None and args.instance_data_dir is None: + raise ValueError("Specify either `--dataset_name` or `--instance_data_dir`") + + if args.dataset_name is not None and args.instance_data_dir is not None: + raise ValueError("Specify only one of `--dataset_name` or `--instance_data_dir`") + + env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) + if env_local_rank != -1 and env_local_rank != args.local_rank: + args.local_rank = env_local_rank + + if args.with_prior_preservation: + if args.class_data_dir is None: + raise ValueError("You must specify a data directory for class images.") + if args.class_prompt is None: + raise ValueError("You must specify prompt for class images.") + else: + # logger is not available yet + if args.class_data_dir is not None: + warnings.warn("You need not use --class_data_dir without --with_prior_preservation.") + if args.class_prompt is not None: + warnings.warn("You need not use --class_prompt without --with_prior_preservation.") + + return args + + +class DreamBoothDataset(Dataset): + """ + A dataset to prepare the instance and class images with the prompts for fine-tuning the model. + It pre-processes the images. + """ + + def __init__( + self, + instance_data_root, + instance_prompt, + class_prompt, + class_data_root=None, + class_num=None, + size=1024, + repeats=1, + center_crop=False, + ): + self.size = size + self.center_crop = center_crop + + self.instance_prompt = instance_prompt + self.custom_instance_prompts = None + self.class_prompt = class_prompt + + # if --dataset_name is provided or a metadata jsonl file is provided in the local --instance_data directory, + # we load the training data using load_dataset + if args.dataset_name is not None: + try: + from datasets import load_dataset + except ImportError: + raise ImportError( + "You are trying to load your data using the datasets library. If you wish to train using custom " + "captions please install the datasets library: `pip install datasets`. If you wish to load a " + "local folder containing images only, specify --instance_data_dir instead." + ) + # Downloading and loading a dataset from the hub. + # See more about loading custom images at + # https://huggingface.co/docs/datasets/v2.0.0/en/dataset_script + dataset = load_dataset( + args.dataset_name, + args.dataset_config_name, + cache_dir=args.cache_dir, + ) + # Preprocessing the datasets. + column_names = dataset["train"].column_names + + # 6. Get the column names for input/target. + if args.image_column is None: + image_column = column_names[0] + logger.info(f"image column defaulting to {image_column}") + else: + image_column = args.image_column + if image_column not in column_names: + raise ValueError( + f"`--image_column` value '{args.image_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}" + ) + instance_images = dataset["train"][image_column] + + if args.caption_column is None: + logger.info( + "No caption column provided, defaulting to instance_prompt for all images. If your dataset " + "contains captions/prompts for the images, make sure to specify the " + "column as --caption_column" + ) + self.custom_instance_prompts = None + else: + if args.caption_column not in column_names: + raise ValueError( + f"`--caption_column` value '{args.caption_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}" + ) + custom_instance_prompts = dataset["train"][args.caption_column] + # create final list of captions according to --repeats + self.custom_instance_prompts = [] + for caption in custom_instance_prompts: + self.custom_instance_prompts.extend(itertools.repeat(caption, repeats)) + else: + self.instance_data_root = Path(instance_data_root) + if not self.instance_data_root.exists(): + raise ValueError("Instance images root doesn't exists.") + + instance_images = [Image.open(path) for path in list(Path(instance_data_root).iterdir())] + self.custom_instance_prompts = None + + self.instance_images = [] + for img in instance_images: + self.instance_images.extend(itertools.repeat(img, repeats)) + + self.pixel_values = [] + train_resize = transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR) + train_crop = transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size) + train_flip = transforms.RandomHorizontalFlip(p=1.0) + train_transforms = transforms.Compose( + [ + transforms.ToTensor(), + transforms.Normalize([0.5], [0.5]), + ] + ) + for image in self.instance_images: + image = exif_transpose(image) + if not image.mode == "RGB": + image = image.convert("RGB") + image = train_resize(image) + if args.random_flip and random.random() < 0.5: + # flip + image = train_flip(image) + if args.center_crop: + y1 = max(0, int(round((image.height - args.resolution) / 2.0))) + x1 = max(0, int(round((image.width - args.resolution) / 2.0))) + image = train_crop(image) + else: + y1, x1, h, w = train_crop.get_params(image, (args.resolution, args.resolution)) + image = crop(image, y1, x1, h, w) + image = train_transforms(image) + self.pixel_values.append(image) + + self.num_instance_images = len(self.instance_images) + self._length = self.num_instance_images + + if class_data_root is not None: + self.class_data_root = Path(class_data_root) + self.class_data_root.mkdir(parents=True, exist_ok=True) + self.class_images_path = list(self.class_data_root.iterdir()) + if class_num is not None: + self.num_class_images = min(len(self.class_images_path), class_num) + else: + self.num_class_images = len(self.class_images_path) + self._length = max(self.num_class_images, self.num_instance_images) + else: + self.class_data_root = None + + self.image_transforms = transforms.Compose( + [ + transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR), + transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size), + transforms.ToTensor(), + transforms.Normalize([0.5], [0.5]), + ] + ) + + def __len__(self): + return self._length + + def __getitem__(self, index): + example = {} + instance_image = self.pixel_values[index % self.num_instance_images] + example["instance_images"] = instance_image + + if self.custom_instance_prompts: + caption = self.custom_instance_prompts[index % self.num_instance_images] + if caption: + example["instance_prompt"] = caption + else: + example["instance_prompt"] = self.instance_prompt + + else: # costum prompts were provided, but length does not match size of image dataset + example["instance_prompt"] = self.instance_prompt + + if self.class_data_root: + class_image = Image.open(self.class_images_path[index % self.num_class_images]) + class_image = exif_transpose(class_image) + + if not class_image.mode == "RGB": + class_image = class_image.convert("RGB") + example["class_images"] = self.image_transforms(class_image) + example["class_prompt"] = self.class_prompt + + return example + + +def collate_fn(examples, with_prior_preservation=False): + pixel_values = [example["instance_images"] for example in examples] + prompts = [example["instance_prompt"] for example in examples] + + # Concat class and instance examples for prior preservation. + # We do this to avoid doing two forward passes. + if with_prior_preservation: + pixel_values += [example["class_images"] for example in examples] + prompts += [example["class_prompt"] for example in examples] + + pixel_values = torch.stack(pixel_values) + pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() + + batch = {"pixel_values": pixel_values, "prompts": prompts} + return batch + + +class PromptDataset(Dataset): + "A simple dataset to prepare the prompts to generate class images on multiple GPUs." + + def __init__(self, prompt, num_samples): + self.prompt = prompt + self.num_samples = num_samples + + def __len__(self): + return self.num_samples + + def __getitem__(self, index): + example = {} + example["prompt"] = self.prompt + example["index"] = index + return example + + +def tokenize_prompt(tokenizer, prompt): + text_inputs = tokenizer( + prompt, + padding="max_length", + max_length=77, + truncation=True, + return_tensors="pt", + ) + text_input_ids = text_inputs.input_ids + return text_input_ids + + +def _encode_prompt_with_t5( + text_encoder, + tokenizer, + prompt=None, + num_images_per_prompt=1, + device=None, +): + prompt = [prompt] if isinstance(prompt, str) else prompt + batch_size = len(prompt) + + text_inputs = tokenizer( + prompt, + padding="max_length", + max_length=77, + truncation=True, + add_special_tokens=True, + return_tensors="pt", + ) + text_input_ids = text_inputs.input_ids + prompt_embeds = text_encoder(text_input_ids.to(device))[0] + + dtype = text_encoder.dtype + prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) + + _, seq_len, _ = prompt_embeds.shape + + # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + + return prompt_embeds + + +def _encode_prompt_with_clip( + text_encoder, + tokenizer, + prompt: str, + device=None, + num_images_per_prompt: int = 1, +): + prompt = [prompt] if isinstance(prompt, str) else prompt + batch_size = len(prompt) + + text_inputs = tokenizer( + prompt, + padding="max_length", + max_length=77, + truncation=True, + return_tensors="pt", + ) + + text_input_ids = text_inputs.input_ids + prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True) + + pooled_prompt_embeds = prompt_embeds[0] + prompt_embeds = prompt_embeds.hidden_states[-2] + prompt_embeds = prompt_embeds.to(dtype=text_encoder.dtype, device=device) + + _, seq_len, _ = prompt_embeds.shape + # duplicate text embeddings for each generation per prompt, using mps friendly method + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + + return prompt_embeds, pooled_prompt_embeds + + +def encode_prompt( + text_encoders, + tokenizers, + prompt: str, + device=None, + num_images_per_prompt: int = 1, +): + prompt = [prompt] if isinstance(prompt, str) else prompt + + clip_tokenizers = tokenizers[:2] + clip_text_encoders = text_encoders[:2] + + clip_prompt_embeds_list = [] + clip_pooled_prompt_embeds_list = [] + for tokenizer, text_encoder in zip(clip_tokenizers, clip_text_encoders): + prompt_embeds, pooled_prompt_embeds = _encode_prompt_with_clip( + text_encoder=text_encoder, + tokenizer=tokenizer, + prompt=prompt, + device=device if device is not None else text_encoder.device, + num_images_per_prompt=num_images_per_prompt, + ) + clip_prompt_embeds_list.append(prompt_embeds) + clip_pooled_prompt_embeds_list.append(pooled_prompt_embeds) + + clip_prompt_embeds = torch.cat(clip_prompt_embeds_list, dim=-1) + pooled_prompt_embeds = torch.cat(clip_pooled_prompt_embeds_list, dim=-1) + + t5_prompt_embed = _encode_prompt_with_t5( + text_encoders[-1], + tokenizers[-1], + prompt=prompt, + num_images_per_prompt=num_images_per_prompt, + device=device if device is not None else text_encoders[-1].device, + ) + + clip_prompt_embeds = torch.nn.functional.pad( + clip_prompt_embeds, (0, t5_prompt_embed.shape[-1] - clip_prompt_embeds.shape[-1]) + ) + prompt_embeds = torch.cat([clip_prompt_embeds, t5_prompt_embed], dim=-2) + + return prompt_embeds, pooled_prompt_embeds + + +def main(args): + if args.report_to == "wandb" and args.hub_token is not None: + raise ValueError( + "You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token." + " Please use `huggingface-cli login` to authenticate with the Hub." + ) + + if torch.backends.mps.is_available() and args.mixed_precision == "bf16": + # due to pytorch#99272, MPS does not yet support bfloat16. + raise ValueError( + "Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 (recommended) or fp32 instead." + ) + + logging_dir = Path(args.output_dir, args.logging_dir) + + accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) + kwargs = DistributedDataParallelKwargs(find_unused_parameters=True) + accelerator = Accelerator( + gradient_accumulation_steps=args.gradient_accumulation_steps, + mixed_precision=args.mixed_precision, + log_with=args.report_to, + project_config=accelerator_project_config, + kwargs_handlers=[kwargs], + ) + + # Disable AMP for MPS. + if torch.backends.mps.is_available(): + accelerator.native_amp = False + + if args.report_to == "wandb": + if not is_wandb_available(): + raise ImportError("Make sure to install wandb if you want to use it for logging during training.") + + # Make one log on every process with the configuration for debugging. + logging.basicConfig( + format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", + datefmt="%m/%d/%Y %H:%M:%S", + level=logging.INFO, + ) + logger.info(accelerator.state, main_process_only=False) + if accelerator.is_local_main_process: + transformers.utils.logging.set_verbosity_warning() + diffusers.utils.logging.set_verbosity_info() + else: + transformers.utils.logging.set_verbosity_error() + diffusers.utils.logging.set_verbosity_error() + + # If passed along, set the training seed now. + if args.seed is not None: + set_seed(args.seed) + + # Generate class images if prior preservation is enabled. + if args.with_prior_preservation: + class_images_dir = Path(args.class_data_dir) + if not class_images_dir.exists(): + class_images_dir.mkdir(parents=True) + cur_class_images = len(list(class_images_dir.iterdir())) + + if cur_class_images < args.num_class_images: + has_supported_fp16_accelerator = torch.cuda.is_available() or torch.backends.mps.is_available() + torch_dtype = torch.float16 if has_supported_fp16_accelerator else torch.float32 + if args.prior_generation_precision == "fp32": + torch_dtype = torch.float32 + elif args.prior_generation_precision == "fp16": + torch_dtype = torch.float16 + elif args.prior_generation_precision == "bf16": + torch_dtype = torch.bfloat16 + pipeline = StableDiffusion3Pipeline.from_pretrained( + args.pretrained_model_name_or_path, + torch_dtype=torch_dtype, + revision=args.revision, + variant=args.variant, + ) + pipeline.set_progress_bar_config(disable=True) + + num_new_images = args.num_class_images - cur_class_images + logger.info(f"Number of class images to sample: {num_new_images}.") + + sample_dataset = PromptDataset(args.class_prompt, num_new_images) + sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size) + + sample_dataloader = accelerator.prepare(sample_dataloader) + pipeline.to(accelerator.device) + + for example in tqdm( + sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process + ): + images = pipeline(example["prompt"]).images + + for i, image in enumerate(images): + hash_image = insecure_hashlib.sha1(image.tobytes()).hexdigest() + image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg" + image.save(image_filename) + + del pipeline + if torch.cuda.is_available(): + torch.cuda.empty_cache() + + # Handle the repository creation + if accelerator.is_main_process: + if args.output_dir is not None: + os.makedirs(args.output_dir, exist_ok=True) + + if args.push_to_hub: + repo_id = create_repo( + repo_id=args.hub_model_id or Path(args.output_dir).name, + exist_ok=True, + ).repo_id + + # Load the tokenizers + tokenizer_one = CLIPTokenizer.from_pretrained( + args.pretrained_model_name_or_path, + subfolder="tokenizer", + revision=args.revision, + ) + tokenizer_two = CLIPTokenizer.from_pretrained( + args.pretrained_model_name_or_path, + subfolder="tokenizer_2", + revision=args.revision, + ) + tokenizer_three = T5TokenizerFast.from_pretrained( + args.pretrained_model_name_or_path, + subfolder="tokenizer_3", + revision=args.revision, + ) + + def deepspeed_zero_init_disabled_context_manager(): + """ + returns either a context list that includes one that will disable zero.Init or an empty context list + """ + deepspeed_plugin = AcceleratorState().deepspeed_plugin if accelerate.state.is_initialized() else None + if deepspeed_plugin is None: + return [] + + return [deepspeed_plugin.zero3_init_context_manager(enable=False)] + + # import correct text encoder classes + text_encoder_cls_one = import_model_class_from_model_name_or_path( + args.pretrained_model_name_or_path, args.revision + ) + text_encoder_cls_two = import_model_class_from_model_name_or_path( + args.pretrained_model_name_or_path, args.revision, subfolder="text_encoder_2" + ) + text_encoder_cls_three = import_model_class_from_model_name_or_path( + args.pretrained_model_name_or_path, args.revision, subfolder="text_encoder_3" + ) + + # Load scheduler and models + noise_scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained( + args.pretrained_model_name_or_path, subfolder="scheduler" + ) + noise_scheduler_copy = copy.deepcopy(noise_scheduler) + + with ContextManagers(deepspeed_zero_init_disabled_context_manager()): + text_encoder_one, text_encoder_two, text_encoder_three = load_text_encoders( + text_encoder_cls_one, text_encoder_cls_two, text_encoder_cls_three + ) + # vae 因为需要用float32的缘故,其中的attn部分需要用native实现,因为flash-attn 不支持float32 + origin_attn = os.environ.get("USE_NATIVE_ATTN", 0) + os.environ["USE_NATIVE_ATTN"] = "1" + vae = AutoencoderKL.from_pretrained( + args.pretrained_model_name_or_path, + subfolder="vae", + revision=args.revision, + variant=args.variant, + ) + os.environ["USE_NATIVE_ATTN"] = origin_attn + + transformer = SD3Transformer2DModel.from_pretrained( + args.pretrained_model_name_or_path, subfolder="transformer", revision=args.revision, variant=args.variant + ) + + transformer.requires_grad_(True) + vae.requires_grad_(False) + if args.train_text_encoder: + text_encoder_one.requires_grad_(True) + text_encoder_two.requires_grad_(True) + text_encoder_three.requires_grad_(True) + else: + text_encoder_one.requires_grad_(False) + text_encoder_two.requires_grad_(False) + text_encoder_three.requires_grad_(False) + + # For mixed precision training we cast all non-trainable weights (vae, non-lora text_encoder and non-lora transformer) to half-precision + # as these weights are only used for inference, keeping weights in full precision is not required. + weight_dtype = torch.float32 + if accelerator.mixed_precision == "fp16": + weight_dtype = torch.float16 + elif accelerator.mixed_precision == "bf16": + weight_dtype = torch.bfloat16 + + if torch.backends.mps.is_available() and weight_dtype == torch.bfloat16: + # due to pytorch#99272, MPS does not yet support bfloat16. + raise ValueError( + "Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 (recommended) or fp32 instead." + ) + + vae.to(accelerator.device, dtype=torch.float32) + if not args.train_text_encoder: + text_encoder_one.to(accelerator.device, dtype=weight_dtype) + text_encoder_two.to(accelerator.device, dtype=weight_dtype) + text_encoder_three.to(accelerator.device, dtype=weight_dtype) + + if args.gradient_checkpointing: + transformer.enable_gradient_checkpointing() + if args.train_text_encoder: + text_encoder_one.gradient_checkpointing_enable() + text_encoder_two.gradient_checkpointing_enable() + text_encoder_three.gradient_checkpointing_enable() + + def unwrap_model(model): + model = accelerator.unwrap_model(model) + model = model._orig_mod if is_compiled_module(model) else model + return model + + # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format + def save_model_hook(models, weights, output_dir): + if accelerator.is_main_process: + for i, model in enumerate(models): + if isinstance(unwrap_model(model), SD3Transformer2DModel): + unwrap_model(model).save_pretrained(os.path.join(output_dir, "transformer")) + elif isinstance(unwrap_model(model), (CLIPTextModelWithProjection, T5EncoderModel)): + if isinstance(unwrap_model(model), CLIPTextModelWithProjection): + hidden_size = unwrap_model(model).config.hidden_size + if hidden_size == 768: + unwrap_model(model).save_pretrained(os.path.join(output_dir, "text_encoder")) + elif hidden_size == 1280: + unwrap_model(model).save_pretrained(os.path.join(output_dir, "text_encoder_2")) + else: + unwrap_model(model).save_pretrained(os.path.join(output_dir, "text_encoder_3")) + else: + raise ValueError(f"Wrong model supplied: {type(model)=}.") + + # make sure to pop weight so that corresponding model is not saved again + if weights: + weights.pop() + + def load_model_hook(models, input_dir): + for _ in range(len(models)): + # pop models so that they are not loaded again + model = models.pop() + + # load diffusers style into model + if isinstance(unwrap_model(model), SD3Transformer2DModel): + load_model = SD3Transformer2DModel.from_pretrained(input_dir, subfolder="transformer") + model.register_to_config(**load_model.config) + + model.load_state_dict(load_model.state_dict()) + elif isinstance(unwrap_model(model), (CLIPTextModelWithProjection, T5EncoderModel)): + try: + load_model = CLIPTextModelWithProjection.from_pretrained(input_dir, subfolder="text_encoder") + model(**load_model.config) + model.load_state_dict(load_model.state_dict()) + except Exception: + try: + load_model = CLIPTextModelWithProjection.from_pretrained(input_dir, subfolder="text_encoder_2") + model(**load_model.config) + model.load_state_dict(load_model.state_dict()) + except Exception: + try: + load_model = T5EncoderModel.from_pretrained(input_dir, subfolder="text_encoder_3") + model(**load_model.config) + model.load_state_dict(load_model.state_dict()) + except Exception: + raise ValueError(f"Couldn't load the model of type: ({type(model)}).") + else: + raise ValueError(f"Unsupported model found: {type(model)=}") + + del load_model + + accelerator.register_save_state_pre_hook(save_model_hook) + accelerator.register_load_state_pre_hook(load_model_hook) + + # Enable TF32 for faster training on Ampere GPUs, + # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices + if args.allow_tf32 and torch.cuda.is_available(): + torch.backends.cuda.matmul.allow_tf32 = True + + if args.scale_lr: + args.learning_rate = ( + args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes + ) + + # Optimization parameters + transformer_parameters_with_lr = {"params": transformer.parameters(), "lr": args.learning_rate} + if args.train_text_encoder: + # different learning rate for text encoder and unet + text_parameters_one_with_lr = { + "params": text_encoder_one.parameters(), + "weight_decay": args.adam_weight_decay_text_encoder, + "lr": args.text_encoder_lr if args.text_encoder_lr else args.learning_rate, + } + text_parameters_two_with_lr = { + "params": text_encoder_two.parameters(), + "weight_decay": args.adam_weight_decay_text_encoder, + "lr": args.text_encoder_lr if args.text_encoder_lr else args.learning_rate, + } + text_parameters_three_with_lr = { + "params": text_encoder_three.parameters(), + "weight_decay": args.adam_weight_decay_text_encoder, + "lr": args.text_encoder_lr if args.text_encoder_lr else args.learning_rate, + } + params_to_optimize = [ + transformer_parameters_with_lr, + text_parameters_one_with_lr, + text_parameters_two_with_lr, + text_parameters_three_with_lr, + ] + else: + params_to_optimize = [transformer_parameters_with_lr] + + # Optimizer creation + if not (args.optimizer.lower() == "prodigy" or args.optimizer.lower() == "adamw"): + logger.warning( + f"Unsupported choice of optimizer: {args.optimizer}.Supported optimizers include [adamW, prodigy]." + "Defaulting to adamW" + ) + args.optimizer = "adamw" + + if args.use_8bit_adam and not args.optimizer.lower() == "adamw": + logger.warning( + f"use_8bit_adam is ignored when optimizer is not set to 'AdamW'. Optimizer was " + f"set to {args.optimizer.lower()}" + ) + + if args.optimizer.lower() == "adamw": + if args.use_8bit_adam: + try: + import bitsandbytes as bnb + except ImportError: + raise ImportError( + "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." + ) + + optimizer_class = bnb.optim.AdamW8bit + elif args.apex_fused_adam: + import apex + optimizer_class = apex.optimizers.FusedAdam + else: + optimizer_class = torch.optim.AdamW + + optimizer = optimizer_class( + params_to_optimize, + betas=(args.adam_beta1, args.adam_beta2), + weight_decay=args.adam_weight_decay, + eps=args.adam_epsilon, + ) + + if args.optimizer.lower() == "prodigy": + try: + import prodigyopt + except ImportError: + raise ImportError("To use Prodigy, please install the prodigyopt library: `pip install prodigyopt`") + + optimizer_class = prodigyopt.Prodigy + + if args.learning_rate <= 0.1: + logger.warning( + "Learning rate is too low. When using prodigy, it's generally better to set learning rate around 1.0" + ) + if args.train_text_encoder and args.text_encoder_lr: + logger.warning( + f"Learning rates were provided both for the transformer and the text encoder- e.g. text_encoder_lr:" + f" {args.text_encoder_lr} and learning_rate: {args.learning_rate}. " + f"When using prodigy only learning_rate is used as the initial learning rate." + ) + # changes the learning rate of text_encoder_parameters_one and text_encoder_parameters_two to be + # --learning_rate + params_to_optimize[1]["lr"] = args.learning_rate + params_to_optimize[2]["lr"] = args.learning_rate + params_to_optimize[3]["lr"] = args.learning_rate + + optimizer = optimizer_class( + params_to_optimize, + lr=args.learning_rate, + betas=(args.adam_beta1, args.adam_beta2), + beta3=args.prodigy_beta3, + weight_decay=args.adam_weight_decay, + eps=args.adam_epsilon, + decouple=args.prodigy_decouple, + use_bias_correction=args.prodigy_use_bias_correction, + safeguard_warmup=args.prodigy_safeguard_warmup, + ) + + # Dataset and DataLoaders creation: + train_dataset = DreamBoothDataset( + instance_data_root=args.instance_data_dir, + instance_prompt=args.instance_prompt, + class_prompt=args.class_prompt, + class_data_root=args.class_data_dir if args.with_prior_preservation else None, + class_num=args.num_class_images, + size=args.resolution, + repeats=args.repeats, + center_crop=args.center_crop, + ) + + train_dataloader = torch.utils.data.DataLoader( + train_dataset, + batch_size=args.train_batch_size, + shuffle=True, + collate_fn=lambda examples: collate_fn(examples, args.with_prior_preservation), + num_workers=args.dataloader_num_workers, + ) + + if not args.train_text_encoder: + tokenizers = [tokenizer_one, tokenizer_two, tokenizer_three] + text_encoders = [text_encoder_one, text_encoder_two, text_encoder_three] + + def compute_text_embeddings(prompt, text_encoders, tokenizers): + with torch.no_grad(): + prompt_embeds, pooled_prompt_embeds = encode_prompt(text_encoders, tokenizers, prompt) + prompt_embeds = prompt_embeds.to(accelerator.device) + pooled_prompt_embeds = pooled_prompt_embeds.to(accelerator.device) + return prompt_embeds, pooled_prompt_embeds + + # If no type of tuning is done on the text_encoder and custom instance prompts are NOT + # provided (i.e. the --instance_prompt is used for all images), we encode the instance prompt once to avoid + # the redundant encoding. + if not args.train_text_encoder and not train_dataset.custom_instance_prompts: + instance_prompt_hidden_states, instance_pooled_prompt_embeds = compute_text_embeddings( + args.instance_prompt, text_encoders, tokenizers + ) + + # Handle class prompt for prior-preservation. + if args.with_prior_preservation: + if not args.train_text_encoder: + class_prompt_hidden_states, class_pooled_prompt_embeds = compute_text_embeddings( + args.class_prompt, text_encoders, tokenizers + ) + + # Clear the memory here + if not args.train_text_encoder and not train_dataset.custom_instance_prompts: + del tokenizers, text_encoders + gc.collect() + if torch.cuda.is_available(): + torch.cuda.empty_cache() + + # If custom instance prompts are NOT provided (i.e. the instance prompt is used for all images), + # pack the statically computed variables appropriately here. This is so that we don't + # have to pass them to the dataloader. + + if not train_dataset.custom_instance_prompts: + if not args.train_text_encoder: + prompt_embeds = instance_prompt_hidden_states + pooled_prompt_embeds = instance_pooled_prompt_embeds + if args.with_prior_preservation: + prompt_embeds = torch.cat([prompt_embeds, class_prompt_hidden_states], dim=0) + pooled_prompt_embeds = torch.cat([pooled_prompt_embeds, class_pooled_prompt_embeds], dim=0) + # if we're optmizing the text encoder (both if instance prompt is used for all images or custom prompts) we need to tokenize and encode the + # batch prompts on all training steps + else: + tokens_one = tokenize_prompt(tokenizer_one, args.instance_prompt) + tokens_two = tokenize_prompt(tokenizer_two, args.instance_prompt) + tokens_three = tokenize_prompt(tokenizer_three, args.instance_prompt) + if args.with_prior_preservation: + class_tokens_one = tokenize_prompt(tokenizer_one, args.class_prompt) + class_tokens_two = tokenize_prompt(tokenizer_two, args.class_prompt) + class_tokens_three = tokenize_prompt(tokenizer_three, args.class_prompt) + tokens_one = torch.cat([tokens_one, class_tokens_one], dim=0) + tokens_two = torch.cat([tokens_two, class_tokens_two], dim=0) + tokens_three = torch.cat([tokens_three, class_tokens_three], dim=0) + + # Scheduler and math around the number of training steps. + overrode_max_train_steps = False + num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) + if args.max_train_steps is None: + args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch + overrode_max_train_steps = True + + lr_scheduler = get_scheduler( + args.lr_scheduler, + optimizer=optimizer, + num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes, + num_training_steps=args.max_train_steps * accelerator.num_processes, + num_cycles=args.lr_num_cycles, + power=args.lr_power, + ) + + # Prepare everything with our `accelerator`. + if args.train_text_encoder: + ( + transformer, + text_encoder_one, + text_encoder_two, + text_encoder_three, + optimizer, + train_dataloader, + lr_scheduler, + ) = accelerator.prepare( + transformer, + text_encoder_one, + text_encoder_two, + text_encoder_three, + optimizer, + train_dataloader, + lr_scheduler, + ) + else: + transformer, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( + transformer, optimizer, train_dataloader, lr_scheduler + ) + + # We need to recalculate our total training steps as the size of the training dataloader may have changed. + num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) + if overrode_max_train_steps: + args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch + # Afterwards we recalculate our number of training epochs + args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) + + # We need to initialize the trackers we use, and also store our configuration. + # The trackers initializes automatically on the main process. + if accelerator.is_main_process: + tracker_name = "dreambooth-sd3" + accelerator.init_trackers(tracker_name, config=vars(args)) + + # Train! + total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps + + logger.info("***** Running training *****") + logger.info(f" Num examples = {len(train_dataset)}") + logger.info(f" Num batches each epoch = {len(train_dataloader)}") + logger.info(f" Num Epochs = {args.num_train_epochs}") + logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") + logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") + logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") + logger.info(f" Total optimization steps = {args.max_train_steps}") + global_step = 0 + first_epoch = 0 + + # Potentially load in the weights and states from a previous save + if args.resume_from_checkpoint: + if args.resume_from_checkpoint != "latest": + path = os.path.basename(args.resume_from_checkpoint) + else: + # Get the mos recent checkpoint + dirs = os.listdir(args.output_dir) + dirs = [d for d in dirs if d.startswith("checkpoint")] + dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) + path = dirs[-1] if len(dirs) > 0 else None + + if path is None: + accelerator.print( + f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." + ) + args.resume_from_checkpoint = None + initial_global_step = 0 + else: + accelerator.print(f"Resuming from checkpoint {path}") + accelerator.load_state(os.path.join(args.output_dir, path)) + global_step = int(path.split("-")[1]) + + initial_global_step = global_step + first_epoch = global_step // num_update_steps_per_epoch + + else: + initial_global_step = 0 + + progress_bar = tqdm( + range(0, args.max_train_steps), + initial=initial_global_step, + desc="Steps", + # Only show the progress bar once on each machine. + disable=not accelerator.is_local_main_process, + ) + + def get_sigmas(timesteps, n_dim=4, dtype=torch.float32): + sigmas = noise_scheduler_copy.sigmas.to(device=accelerator.device, dtype=dtype) + schedule_timesteps = noise_scheduler_copy.timesteps.to(accelerator.device) + timesteps = timesteps.to(accelerator.device) + step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps] + + sigma = sigmas[step_indices].flatten() + while len(sigma.shape) < n_dim: + sigma = sigma.unsqueeze(-1) + return sigma + + if args.NHWC: + transformer = transformer.to(memory_format=torch.channels_last) + + for epoch in range(first_epoch, args.num_train_epochs): + iter_start = time.time() + ips_per_device = ips_per_gpu = 0 + transformer.train() + if args.train_text_encoder: + text_encoder_one.train() + text_encoder_two.train() + text_encoder_three.train() + + for step, batch in enumerate(train_dataloader): + models_to_accumulate = [transformer] + if args.train_text_encoder: + models_to_accumulate.extend([text_encoder_one, text_encoder_two, text_encoder_three]) + with accelerator.accumulate(models_to_accumulate): + pixel_values = batch["pixel_values"].to(dtype=vae.dtype) + prompts = batch["prompts"] + + # encode batch prompts when custom prompts are provided for each image - + if train_dataset.custom_instance_prompts: + if not args.train_text_encoder: + prompt_embeds, pooled_prompt_embeds = compute_text_embeddings( + prompts, text_encoders, tokenizers + ) + else: + tokens_one = tokenize_prompt(tokenizer_one, prompts) + tokens_two = tokenize_prompt(tokenizer_two, prompts) + tokens_three = tokenize_prompt(tokenizer_three, prompts) + + # Convert images to latent space + model_input = vae.encode(pixel_values).latent_dist.sample() + model_input = model_input * vae.config.scaling_factor + model_input = model_input.to(dtype=weight_dtype) + + # Sample noise that we'll add to the latents + noise = torch.randn_like(model_input) + bsz = model_input.shape[0] + + # Sample a random timestep for each image + indices = torch.randint(0, noise_scheduler_copy.config.num_train_timesteps, (bsz,)) + timesteps = noise_scheduler_copy.timesteps[indices].to(device=model_input.device) + + # Add noise according to flow matching. + sigmas = get_sigmas(timesteps, n_dim=model_input.ndim, dtype=model_input.dtype) + noisy_model_input = sigmas * noise + (1.0 - sigmas) * model_input + + if args.NHWC: + noisy_model_input = noisy_model_input.to(memory_format=torch.channels_last) + + # Predict the noise residual + if not args.train_text_encoder: + model_pred = transformer( + hidden_states=noisy_model_input, + timestep=timesteps, + encoder_hidden_states=prompt_embeds, + pooled_projections=pooled_prompt_embeds, + return_dict=False, + )[0] + else: + prompt_embeds, pooled_prompt_embeds = encode_prompt( + text_encoders=[text_encoder_one, text_encoder_two, text_encoder_three], + tokenizers=None, + prompt=None, + text_input_ids_list=[tokens_one, tokens_two, tokens_three], + ) + model_pred = transformer( + hidden_states=noisy_model_input, + timestep=timesteps, + encoder_hidden_states=prompt_embeds, + pooled_projections=pooled_prompt_embeds, + return_dict=False, + )[0] + + # Follow: Section 5 of https://arxiv.org/abs/2206.00364. + # Preconditioning of the model outputs. + model_pred = model_pred * (-sigmas) + noisy_model_input + + # TODO (kashif, sayakpaul): weighting sceme needs to be experimented with :) + if args.weighting_scheme == "sigma_sqrt": + weighting = (sigmas**-2.0).float() + elif args.weighting_scheme == "logit_normal": + # See 3.1 in the SD3 paper ($rf/lognorm(0.00,1.00)$). + u = torch.normal(mean=args.logit_mean, std=args.logit_std, size=(bsz,), device=accelerator.device) + weighting = torch.nn.functional.sigmoid(u) + elif args.weighting_scheme == "mode": + # See sec 3.1 in the SD3 paper (20). + u = torch.rand(size=(bsz,), device=accelerator.device) + weighting = 1 - u - args.mode_scale * (torch.cos(math.pi * u / 2) ** 2 - 1 + u) + + # simplified flow matching aka 0-rectified flow matching loss + # target = model_input - noise + target = model_input + + if args.with_prior_preservation: + # Chunk the noise and model_pred into two parts and compute the loss on each part separately. + model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0) + target, target_prior = torch.chunk(target, 2, dim=0) + + # Compute prior loss + prior_loss = torch.mean( + (weighting.float() * (model_pred_prior.float() - target_prior.float()) ** 2).reshape( + target_prior.shape[0], -1 + ), + 1, + ) + prior_loss = prior_loss.mean() + + # Compute regular loss. + loss = torch.mean( + (weighting.float() * (model_pred.float() - target.float()) ** 2).reshape(target.shape[0], -1), + 1, + ) + loss = loss.mean() + + if args.with_prior_preservation: + # Add the prior loss to the instance loss. + loss = loss + args.prior_loss_weight * prior_loss + + accelerator.backward(loss) + if accelerator.sync_gradients: + params_to_clip = ( + itertools.chain( + transformer.parameters(), + text_encoder_one.parameters(), + text_encoder_two.parameters(), + text_encoder_three.parameters(), + ) + if args.train_text_encoder + else transformer.parameters() + ) + accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) + + optimizer.step() + lr_scheduler.step() + optimizer.zero_grad() + + # Checks if the accelerator has performed an optimization step behind the scenes + if accelerator.sync_gradients: + progress_bar.update(1) + global_step += 1 + iter_elapse = time.time() - iter_start + iter_start = time.time() + ips_per_device = total_batch_size / iter_elapse / accelerator.num_processes + ips_per_gpu = ips_per_device * 2 + + if global_step % args.checkpointing_steps == 0: + # _before_ saving state, check if this save would set us over the `checkpoints_total_limit` + if args.checkpoints_total_limit is not None: + checkpoints = os.listdir(args.output_dir) + checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] + checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) + + # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints + if len(checkpoints) >= args.checkpoints_total_limit: + num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 + removing_checkpoints = checkpoints[0:num_to_remove] + + logger.info( + f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" + ) + logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") + + for removing_checkpoint in removing_checkpoints: + removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) + shutil.rmtree(removing_checkpoint) + + save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") + # 这段代码是为了解决NHWC时保存模型出错 + if args.NHWC: + origin_model = accelerator._models[0] + accelerator._models[0] = origin_model.to(memory_format=torch.contiguous_format) + accelerator.save_state(save_path) + accelerator._models[0] = origin_model.to(memory_format=torch.channels_last) + else: + accelerator.save_state(save_path) + logger.info(f"Saved state to {save_path}") + + logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0], + "ips_per_device": ips_per_device, "ips_per_gpu": ips_per_gpu} + progress_bar.set_postfix(**logs) + accelerator.log(logs, step=global_step) + + if global_step >= args.max_train_steps: + break + + if accelerator.is_main_process: + if args.validation_prompt is not None and epoch % args.validation_epochs == 0: + # create pipeline + if not args.train_text_encoder: + text_encoder_one, text_encoder_two, text_encoder_three = load_text_encoders( + text_encoder_cls_one, text_encoder_cls_two, text_encoder_cls_three + ) + pipeline = StableDiffusion3Pipeline.from_pretrained( + args.pretrained_model_name_or_path, + vae=vae.to(memory_format=torch.contiguous_format) if args.NHWC else vae, + text_encoder=accelerator.unwrap_model(text_encoder_one), + text_encoder_2=accelerator.unwrap_model(text_encoder_two), + text_encoder_3=accelerator.unwrap_model(text_encoder_three), + transformer=accelerator.unwrap_model(transformer.to(memory_format=torch.contiguous_format) if args.NHWC else transformer), + revision=args.revision, + variant=args.variant, + torch_dtype=weight_dtype, + ) + pipeline_args = {"prompt": args.validation_prompt} + images = log_validation( + pipeline=pipeline, + args=args, + accelerator=accelerator, + pipeline_args=pipeline_args, + epoch=epoch, + ) + if not args.train_text_encoder: + del text_encoder_one, text_encoder_two, text_encoder_three + torch.cuda.empty_cache() + gc.collect() + + # Save the lora layers + accelerator.wait_for_everyone() + if accelerator.is_main_process: + transformer = unwrap_model(transformer) + + if args.train_text_encoder: + text_encoder_one = unwrap_model(text_encoder_one) + text_encoder_two = unwrap_model(text_encoder_two) + text_encoder_three = unwrap_model(text_encoder_three) + pipeline = StableDiffusion3Pipeline.from_pretrained( + args.pretrained_model_name_or_path, + transformer=transformer.to(memory_format=torch.contiguous_format) if args.NHWC else transformer, + text_encoder=text_encoder_one, + text_encoder_2=text_encoder_two, + text_encoder_3=text_encoder_three, + ) + else: + pipeline = StableDiffusion3Pipeline.from_pretrained( + args.pretrained_model_name_or_path, + transformer=transformer.to(memory_format=torch.contiguous_format) if args.NHWC else transformer, + ) + + # save the pipeline + pipeline.save_pretrained(args.output_dir) + + # Final inference + # Load previous pipeline + pipeline = StableDiffusion3Pipeline.from_pretrained( + args.output_dir, + revision=args.revision, + variant=args.variant, + torch_dtype=weight_dtype, + ) + + # run inference + images = [] + if args.validation_prompt and args.num_validation_images > 0: + pipeline_args = {"prompt": args.validation_prompt} + images = log_validation( + pipeline=pipeline, + args=args, + accelerator=accelerator, + pipeline_args=pipeline_args, + epoch=epoch, + is_final_validation=True, + ) + + if args.push_to_hub: + save_model_card( + repo_id, + images=images, + base_model=args.pretrained_model_name_or_path, + train_text_encoder=args.train_text_encoder, + instance_prompt=args.instance_prompt, + validation_prompt=args.validation_prompt, + repo_folder=args.output_dir, + ) + upload_folder( + repo_id=repo_id, + folder_path=args.output_dir, + commit_message="End of training", + ignore_patterns=["step_*", "epoch_*"], + ) + + accelerator.end_training() + + +if __name__ == "__main__": + args = parse_args() + main(args) diff --git a/multimodal/diffusion/stable-diffusion/diffusers/train_text_to_image.py b/multimodal/diffusion/stable-diffusion/diffusers/train_text_to_image.py index 4c78e1b4a4132f078076bef3861091f07e481665..491ed5face8d84243d5fa53e19d86ecc029c025c 100644 --- a/multimodal/diffusion/stable-diffusion/diffusers/train_text_to_image.py +++ b/multimodal/diffusion/stable-diffusion/diffusers/train_text_to_image.py @@ -1,8 +1,6 @@ #!/usr/bin/env python # coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. -# Copyright (c) 2024, Shanghai Iluvatar CoreX Semiconductor Co., Ltd. -# All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -16,13 +14,30 @@ # See the License for the specific language governing permissions and # limitations under the License. +# Copyright (c) 2023, Shanghai Iluvatar CoreX Semiconductor Co., Ltd. +# All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); you may +# not use this file except in compliance with the License. You may obtain +# a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +# License for the specific language governing permissions and limitations +# under the License. + import argparse import logging import math import os import random import shutil +from contextlib import nullcontext from pathlib import Path +import time import accelerate import datasets @@ -46,7 +61,7 @@ from transformers.utils import ContextManagers import diffusers from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionPipeline, UNet2DConditionModel from diffusers.optimization import get_scheduler -from diffusers.training_utils import EMAModel, compute_snr +from diffusers.training_utils import EMAModel, compute_dream_and_update_latents, compute_snr from diffusers.utils import check_min_version, deprecate, is_wandb_available, make_image_grid from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card from diffusers.utils.import_utils import is_xformers_available @@ -58,12 +73,12 @@ if is_wandb_available(): # Will error if the minimal version of diffusers is not installed. Remove at your own risks. -check_min_version("0.27.0") +check_min_version("0.29.0") logger = get_logger(__name__, log_level="INFO") DATASET_NAME_MAPPING = { - "lambdalabs/pokemon-blip-captions": ("image", "text"), + "lambdalabs/naruto-blip-captions": ("image", "text"), } @@ -166,7 +181,12 @@ def log_validation(vae, text_encoder, tokenizer, unet, args, accelerator, weight images = [] for i in range(len(args.validation_prompts)): - with torch.autocast("cuda"): + if torch.backends.mps.is_available(): + autocast_ctx = nullcontext() + else: + autocast_ctx = torch.autocast(accelerator.device.type) + + with autocast_ctx: image = pipeline(args.validation_prompts[i], num_inference_steps=20, generator=generator).images[0] images.append(image) @@ -357,6 +377,20 @@ def parse_args(): help="SNR weighting gamma to be used if rebalancing the loss. Recommended value is 5.0. " "More details here: https://arxiv.org/abs/2303.09556.", ) + parser.add_argument( + "--dream_training", + action="store_true", + help=( + "Use the DREAM training method, which makes training more efficient and accurate at the ", + "expense of doing an extra forward pass. See: https://arxiv.org/abs/2312.00210", + ), + ) + parser.add_argument( + "--dream_detail_preservation", + type=float, + default=1.0, + help="Dream detail preservation factor p (should be greater than 0; default=1.0, as suggested in the paper)", + ) parser.add_argument( "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." ) @@ -382,7 +416,7 @@ def parse_args(): parser.add_argument( "--dataloader_num_workers", type=int, - default=16, + default=0, help=( "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." ), @@ -489,7 +523,7 @@ def parse_args(): action="store_true", help="Whether or not using fused_adam optimizer", ) - + args = parser.parse_args() env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) if env_local_rank != -1 and env_local_rank != args.local_rank: @@ -535,6 +569,10 @@ def main(): project_config=accelerator_project_config, ) + # Disable AMP for MPS. + if torch.backends.mps.is_available(): + accelerator.native_amp = False + # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", @@ -564,7 +602,6 @@ def main(): repo_id = create_repo( repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token ).repo_id - # Load scheduler, tokenizer and models. noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") tokenizer = CLIPTokenizer.from_pretrained( @@ -601,6 +638,7 @@ def main(): unet = UNet2DConditionModel.from_pretrained( args.pretrained_model_name_or_path, subfolder="unet", revision=args.non_ema_revision ) + # Freeze vae and text_encoder and set unet to trainable vae.requires_grad_(False) text_encoder.requires_grad_(False) @@ -685,10 +723,11 @@ def main(): ) optimizer_cls = bnb.optim.AdamW8bit + elif args.apex_fused_adam: import apex optimizer_cls = apex.optimizers.FusedAdam - + else: optimizer_cls = torch.optim.AdamW @@ -783,17 +822,12 @@ def main(): examples["pixel_values"] = [train_transforms(image) for image in images] examples["input_ids"] = tokenize_captions(examples) return examples - + with accelerator.main_process_first(): if args.max_train_samples is not None: dataset["train"] = dataset["train"].shuffle(seed=args.seed).select(range(args.max_train_samples)) # Set the training transforms train_dataset = dataset["train"].with_transform(preprocess_train) - - # for testing ips - from datasets import concatenate_datasets - train_dataset = concatenate_datasets([train_dataset for i in range(10)]) - def collate_fn(examples): pixel_values = torch.stack([example["pixel_values"] for example in examples]) @@ -808,8 +842,6 @@ def main(): collate_fn=collate_fn, batch_size=args.train_batch_size, num_workers=args.dataloader_num_workers, - pin_memory=True, - prefetch_factor = 2 ) # Scheduler and math around the number of training steps. @@ -843,7 +875,6 @@ def main(): elif accelerator.mixed_precision == "bf16": weight_dtype = torch.bfloat16 args.mixed_precision = accelerator.mixed_precision - # Move text_encode and vae to gpu and cast to weight_dtype text_encoder.to(accelerator.device, dtype=weight_dtype) vae.to(accelerator.device, dtype=weight_dtype) @@ -920,12 +951,11 @@ def main(): if args.NHWC: unet = unet.to(memory_format=torch.channels_last) vae = vae.to(memory_format=torch.channels_last) - - import time + for epoch in range(first_epoch, args.num_train_epochs): train_loss = 0.0 - iter_start = time.time() ips_per_device = ips_per_gpu = 0 + iter_start = time.time() for step, batch in enumerate(train_dataloader): with accelerator.accumulate(unet): # Convert images to latent space @@ -970,11 +1000,21 @@ def main(): else: raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") + if args.dream_training: + noisy_latents, target = compute_dream_and_update_latents( + unet, + noise_scheduler, + timesteps, + noise, + noisy_latents, + target, + encoder_hidden_states, + args.dream_detail_preservation, + ) + # Predict the noise residual and compute loss if args.NHWC: noisy_latents = noisy_latents.to(memory_format=torch.channels_last) - # timesteps = timesteps.to(memory_format=torch.channels_last) - # encoder_hidden_states = encoder_hidden_states.to(memory_format=torch.channels_last) model_pred = unet(noisy_latents, timesteps, encoder_hidden_states, return_dict=False)[0] if args.snr_gamma is None: @@ -1043,7 +1083,6 @@ def main(): shutil.rmtree(removing_checkpoint) save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") - # 这段代码是为了解决NHWC时保存模型出错 if args.NHWC: origin_model = accelerator._models[0] accelerator._models[0] = origin_model.to(memory_format=torch.contiguous_format) @@ -1051,9 +1090,9 @@ def main(): accelerator._models[0] = origin_model.to(memory_format=torch.channels_last) else: accelerator.save_state(save_path) - logger.info(f"Saved state to {save_path}") + logger.info(f"Saved state to {save_path}") - logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0], + logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0], "ips_per_device": ips_per_device, "ips_per_gpu": ips_per_gpu} progress_bar.set_postfix(**logs) diff --git a/multimodal/diffusion/stable-diffusion/diffusers/train_text_to_image_sdxl.py b/multimodal/diffusion/stable-diffusion/diffusers/train_text_to_image_sdxl.py index 20369a08ede19e6242b738a044fbf2fbfd135bd6..c654a519eed8a5e089f50f2a7d9090c0259ca9b4 100755 --- a/multimodal/diffusion/stable-diffusion/diffusers/train_text_to_image_sdxl.py +++ b/multimodal/diffusion/stable-diffusion/diffusers/train_text_to_image_sdxl.py @@ -1,8 +1,6 @@ #!/usr/bin/env python # coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. -# Copyright (c) 2024, Shanghai Iluvatar CoreX Semiconductor Co., Ltd. -# All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -15,6 +13,21 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. + +# Copyright (c) 2024, Shanghai Iluvatar CoreX Semiconductor Co., Ltd. +# All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); you may +# not use this file except in compliance with the License. You may obtain +# a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +# License for the specific language governing permissions and limitations +# under the License. """Fine-tuning script for Stable Diffusion XL for text2image.""" import argparse @@ -25,9 +38,10 @@ import math import os import random import shutil +from contextlib import nullcontext from pathlib import Path +import os import time - import accelerate import datasets import numpy as np @@ -36,9 +50,8 @@ import torch.nn.functional as F import torch.utils.checkpoint import transformers from accelerate import Accelerator -from accelerate.state import AcceleratorState from accelerate.logging import get_logger -from accelerate.utils import ProjectConfiguration, set_seed +from accelerate.utils import DistributedType, ProjectConfiguration, set_seed from datasets import concatenate_datasets, load_dataset from huggingface_hub import create_repo, upload_folder from packaging import version @@ -46,7 +59,6 @@ from torchvision import transforms from torchvision.transforms.functional import crop from tqdm.auto import tqdm from transformers import AutoTokenizer, PretrainedConfig -from transformers.utils import ContextManagers import diffusers from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionXLPipeline, UNet2DConditionModel @@ -54,18 +66,22 @@ from diffusers.optimization import get_scheduler from diffusers.training_utils import EMAModel, compute_snr from diffusers.utils import check_min_version, is_wandb_available from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card -from diffusers.utils.import_utils import is_xformers_available +from diffusers.utils.import_utils import is_torch_npu_available, is_xformers_available from diffusers.utils.torch_utils import is_compiled_module +from accelerate.state import AcceleratorState +from transformers.utils import ContextManagers + # Will error if the minimal version of diffusers is not installed. Remove at your own risks. -check_min_version("0.27.0") +check_min_version("0.29.0") logger = get_logger(__name__) - +if is_torch_npu_available(): + torch.npu.config.allow_internal_format = False DATASET_NAME_MAPPING = { - "lambdalabs/pokemon-blip-captions": ("image", "text"), + "lambdalabs/naruto-blip-captions": ("image", "text"), } @@ -169,7 +185,7 @@ def parse_args(input_args=None): help=( "The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private," " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem," - " or to a folder containing files that 🤗 Datasets can understand." + " or to a folder containing files that 🤗 Datasets can understand." ), ) parser.add_argument( @@ -464,6 +480,9 @@ def parse_args(input_args=None): ), ) parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") + parser.add_argument( + "--enable_npu_flash_attention", action="store_true", help="Whether or not to use npu flash attention." + ) parser.add_argument( "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." ) @@ -546,7 +565,6 @@ def compute_vae_encodings(batch, vae): memory_format = torch.channels_last if int(os.environ["USE_NHWC_GN"]) else torch.contiguous_format images = batch.pop("pixel_values") pixel_values = torch.stack(list(images)) - pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() pixel_values = pixel_values.to(vae.device, dtype=vae.dtype, memory_format=memory_format) with torch.no_grad(): @@ -610,6 +628,12 @@ def main(args): accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) + if torch.backends.mps.is_available() and args.mixed_precision == "bf16": + # due to pytorch#99272, MPS does not yet support bfloat16. + raise ValueError( + "Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 (recommended) or fp32 instead." + ) + accelerator = Accelerator( gradient_accumulation_steps=args.gradient_accumulation_steps, mixed_precision=args.mixed_precision, @@ -617,6 +641,10 @@ def main(args): project_config=accelerator_project_config, ) + # Disable AMP for MPS. + if torch.backends.mps.is_available(): + accelerator.native_amp = False + if args.report_to == "wandb": if not is_wandb_available(): raise ImportError("Make sure to install wandb if you want to use it for logging during training.") @@ -666,17 +694,6 @@ def main(args): use_fast=False, ) - # import correct text encoder classes - text_encoder_cls_one = import_model_class_from_model_name_or_path( - args.pretrained_model_name_or_path, args.revision - ) - text_encoder_cls_two = import_model_class_from_model_name_or_path( - args.pretrained_model_name_or_path, args.revision, subfolder="text_encoder_2" - ) - - # Load scheduler and models - noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") - def deepspeed_zero_init_disabled_context_manager(): """ returns either a context list that includes one that will disable zero.Init or an empty context list @@ -687,21 +704,31 @@ def main(args): return [deepspeed_plugin.zero3_init_context_manager(enable=False)] - vae_path = ( - args.pretrained_model_name_or_path - if args.pretrained_vae_model_name_or_path is None - else args.pretrained_vae_model_name_or_path + + # import correct text encoder classes + text_encoder_cls_one = import_model_class_from_model_name_or_path( + args.pretrained_model_name_or_path, args.revision ) - + text_encoder_cls_two = import_model_class_from_model_name_or_path( + args.pretrained_model_name_or_path, args.revision, subfolder="text_encoder_2" + ) + + # Load scheduler and models + noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") + # Check for terminal SNR in combination with SNR Gamma with ContextManagers(deepspeed_zero_init_disabled_context_manager()): - # Check for terminal SNR in combination with SNR Gamma text_encoder_one = text_encoder_cls_one.from_pretrained( args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant ) text_encoder_two = text_encoder_cls_two.from_pretrained( args.pretrained_model_name_or_path, subfolder="text_encoder_2", revision=args.revision, variant=args.variant ) - # vae 因为需è¦�用float32的缘故,其中的attn部分需è¦�用native实现,因为flash-attn ä¸�支æŒ�float32 + vae_path = ( + args.pretrained_model_name_or_path + if args.pretrained_vae_model_name_or_path is None + else args.pretrained_vae_model_name_or_path + ) + # vae 因为需要用float32的缘故,其中的attn部分需要用native实现,因为flash-attn 不支持float32 origin_attn = os.environ.get("USE_NATIVE_ATTN", 0) os.environ["USE_NATIVE_ATTN"] = "1" vae = AutoencoderKL.from_pretrained( @@ -711,6 +738,7 @@ def main(args): variant=args.variant, ) os.environ["USE_NATIVE_ATTN"] = origin_attn + unet = UNet2DConditionModel.from_pretrained( args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, variant=args.variant ) @@ -742,7 +770,12 @@ def main(args): args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, variant=args.variant ) ema_unet = EMAModel(ema_unet.parameters(), model_cls=UNet2DConditionModel, model_config=ema_unet.config) - + if args.enable_npu_flash_attention: + if is_torch_npu_available(): + logger.info("npu flash attention enabled.") + unet.enable_npu_flash_attention() + else: + raise ValueError("npu flash attention requires torch_npu extensions and is supported only on npu devices.") if args.enable_xformers_memory_efficient_attention: if is_xformers_available(): import xformers @@ -768,7 +801,7 @@ def main(args): model.save_pretrained(os.path.join(output_dir, "unet")) # make sure to pop weight so that corresponding model is not saved again - if len(weights) > 0: + if weights: weights.pop() def load_model_hook(models, input_dir): @@ -944,7 +977,6 @@ def main(args): train_dataset_with_vae = train_dataset.map( compute_vae_encodings_fn, batched=True, - # batch_size=args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps,\ batch_size=args.train_batch_size, new_fingerprint=new_fingerprint_for_vae, ) @@ -953,6 +985,7 @@ def main(args): ) precomputed_dataset = precomputed_dataset.with_transform(preprocess_train) + del compute_vae_encodings_fn, compute_embeddings_fn, text_encoder_one, text_encoder_two del text_encoders, tokenizers, vae gc.collect() torch.cuda.empty_cache() @@ -973,7 +1006,7 @@ def main(args): } # DataLoaders creation: - # for testing ips + # for testing ips on small dataset, like pokenman. If dataset is not small, delete here. precomputed_dataset = concatenate_datasets([precomputed_dataset for i in range(10)]) train_dataloader = torch.utils.data.DataLoader( @@ -1024,6 +1057,11 @@ def main(args): model = model._orig_mod if is_compiled_module(model) else model return model + if torch.backends.mps.is_available() or "playground" in args.pretrained_model_name_or_path: + autocast_ctx = nullcontext() + else: + autocast_ctx = torch.autocast(accelerator.device.type) + # Train! total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps @@ -1072,7 +1110,7 @@ def main(args): # Only show the progress bar once on each machine. disable=not accelerator.is_local_main_process, ) - + if args.NHWC: unet = unet.to(memory_format=torch.channels_last) @@ -1127,7 +1165,6 @@ def main(args): prompt_embeds = batch["prompt_embeds"].to(accelerator.device) pooled_prompt_embeds = batch["pooled_prompt_embeds"].to(accelerator.device) unet_added_conditions.update({"text_embeds": pooled_prompt_embeds}) - if args.NHWC: noisy_model_input = noisy_model_input.to(memory_format=torch.channels_last) model_pred = unet( @@ -1200,39 +1237,41 @@ def main(args): ips_per_device = total_batch_size / iter_elapse / accelerator.num_processes ips_per_gpu = ips_per_device * 2 - if global_step % args.checkpointing_steps == 0: - # _before_ saving state, check if this save would set us over the `checkpoints_total_limit` - if args.checkpoints_total_limit is not None: - checkpoints = os.listdir(args.output_dir) - checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] - checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) - - # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints - if len(checkpoints) >= args.checkpoints_total_limit: - num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 - removing_checkpoints = checkpoints[0:num_to_remove] - - logger.info( - f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" - ) - logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") - - for removing_checkpoint in removing_checkpoints: - removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) - shutil.rmtree(removing_checkpoint) - - save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") - # 这段代ç �是为了解决NHWCæ—¶ä¿�存模型出错 - if args.NHWC: - origin_model = accelerator._models[0] - accelerator._models[0] = origin_model.to(memory_format=torch.contiguous_format) - accelerator.save_state(save_path) - accelerator._models[0] = origin_model.to(memory_format=torch.channels_last) - else: - accelerator.save_state(save_path) - logger.info(f"Saved state to {save_path}") - - logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0], + # DeepSpeed requires saving weights on every device; saving weights only on the main process would cause issues. + if accelerator.distributed_type == DistributedType.DEEPSPEED or accelerator.is_main_process: + if global_step % args.checkpointing_steps == 0: + # _before_ saving state, check if this save would set us over the `checkpoints_total_limit` + if args.checkpoints_total_limit is not None: + checkpoints = os.listdir(args.output_dir) + checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] + checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) + + # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints + if len(checkpoints) >= args.checkpoints_total_limit: + num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 + removing_checkpoints = checkpoints[0:num_to_remove] + + logger.info( + f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" + ) + logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") + + for removing_checkpoint in removing_checkpoints: + removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) + shutil.rmtree(removing_checkpoint) + + save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") + # 这段代码是为了解决NHWC时保存模型出错 + if args.NHWC: + origin_model = accelerator._models[0] + accelerator._models[0] = origin_model.to(memory_format=torch.contiguous_format) + accelerator.save_state(save_path) + accelerator._models[0] = origin_model.to(memory_format=torch.channels_last) + else: + accelerator.save_state(save_path) + logger.info(f"Saved state to {save_path}") + + logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0], "ips_per_device": ips_per_device, "ips_per_gpu": ips_per_gpu} progress_bar.set_postfix(**logs) @@ -1276,7 +1315,7 @@ def main(args): generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None pipeline_args = {"prompt": args.validation_prompt} - with torch.cuda.amp.autocast(): + with autocast_ctx: images = [ pipeline(**pipeline_args, generator=generator, num_inference_steps=25).images[0] for _ in range(args.num_validation_images) @@ -1299,6 +1338,10 @@ def main(args): del pipeline torch.cuda.empty_cache() + if args.use_ema: + # Switch back to the original UNet parameters. + ema_unet.restore(unet.parameters()) + accelerator.wait_for_everyone() if accelerator.is_main_process: unet = unwrap_model(unet) @@ -1315,8 +1358,8 @@ def main(args): ) pipeline = StableDiffusionXLPipeline.from_pretrained( args.pretrained_model_name_or_path, - unet=unet, - vae=vae, + unet=unet.to(memory_format=torch.contiguous_format) if args.NHWC else unet, + vae=vae.to(memory_format=torch.contiguous_format) if args.NHWC else vae, revision=args.revision, variant=args.variant, torch_dtype=weight_dtype, @@ -1331,7 +1374,8 @@ def main(args): if args.validation_prompt and args.num_validation_images > 0: pipeline = pipeline.to(accelerator.device) generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None - with torch.cuda.amp.autocast(): + + with autocast_ctx: images = [ pipeline(args.validation_prompt, num_inference_steps=25, generator=generator).images[0] for _ in range(args.num_validation_images) diff --git a/multimodal/diffusion/stable-diffusion/sd_1.5/README.md b/multimodal/diffusion/stable-diffusion/sd_1.5/README.md index 3ef19e8ab27ea239aa7c8f489422ffdd62b794cb..18283f38c24bd623e13a1adc8d8d783ad198cb08 100644 --- a/multimodal/diffusion/stable-diffusion/sd_1.5/README.md +++ b/multimodal/diffusion/stable-diffusion/sd_1.5/README.md @@ -19,7 +19,7 @@ dataset: download the lambdalabs/pokemon-blip-captions from [huggingface page]( ## Step 2: Installation ```bash -pip3 install http://files.deepspark.org.cn:880/deepspark/add-ons/diffusers-0.22.0-py3-none-any.whl +pip3 install http://files.deepspark.org.cn:880/deepspark/add-ons/diffusers-0.29.0-py3-none-any.whl pip3 install http://files.deepspark.org.cn:880/deepspark/add-ons/transformers-4.38.1-py3-none-any.whl pip3 install -r requirements.txt pip3 install pillow --upgrade diff --git a/multimodal/diffusion/stable-diffusion/sd_2.1/README.md b/multimodal/diffusion/stable-diffusion/sd_2.1/README.md index 0404125adc6175fa5816a10a1e2e67137e15c4d2..09403c958300a32a357f16df751c29a61534b26c 100644 --- a/multimodal/diffusion/stable-diffusion/sd_2.1/README.md +++ b/multimodal/diffusion/stable-diffusion/sd_2.1/README.md @@ -19,7 +19,7 @@ Download the lambdalabs/pokemon-blip-captions from [huggingface page](https://h ## Step 2: Installation ```bash -pip3 install http://files.deepspark.org.cn:880/deepspark/add-ons/diffusers-0.22.0-py3-none-any.whl +pip3 install http://files.deepspark.org.cn:880/deepspark/add-ons/diffusers-0.29.0-py3-none-any.whl pip3 install http://files.deepspark.org.cn:880/deepspark/add-ons/transformers-4.38.1-py3-none-any.whl pip3 install -r requirements.txt pip3 install pillow --upgrade diff --git a/multimodal/diffusion/stable-diffusion/sd_3/README.md b/multimodal/diffusion/stable-diffusion/sd_3/README.md new file mode 100644 index 0000000000000000000000000000000000000000..33edda1519e0e6a80313becce9d046e69b7f3d0f --- /dev/null +++ b/multimodal/diffusion/stable-diffusion/sd_3/README.md @@ -0,0 +1,53 @@ +# Stable Diffusion 3 + +## Model description + +Stable Diffusion is a latent text-to-image diffusion model capable of generating photo-realistic images given any text input. + +## Step 1: Preparation + +You just need to run the script, and it will automatically download the required data and weights. Or you can manually download the weights and data locally. + +### Weights + +Download the stabilityai/stable-diffusion-3-medium-diffusers from [huggingface page](https://huggingface.co/stabilityai/stable-diffusion-3-medium-diffusers). + +### Datasets + +dataset: download the diffusers/dog-example from [huggingface page](https://huggingface.co/datasets/diffusers/dog-example). + +## Step 2: Installation + +```bash +pip3 install http://files.deepspark.org.cn:880/deepspark/add-ons/diffusers-0.29.0-py3-none-any.whl +pip3 install http://files.deepspark.org.cn:880/deepspark/add-ons/transformers-4.38.1-py3-none-any.whl +pip3 install -r requirements.txt +pip3 install pillow --upgrade +``` + +## Step 3: Training + +If you have downloaded the weights and dataset, please export the environment variables like below. + +```bash +export MODEL_PATH=/path/to/sd_weights +export DATASET_PATH=/path/to/data +``` + +```bash +# Go to diffusers path +cd ${PROJ_ROOT}/multimodal/diffusion/stable-diffusion/diffusers + +# train +bash run_sd3_dreambooth.sh +``` + +## Results + +| Model | GPUs | ips_per_device | ips_per_gpu | +| ------ | ------- | -------------- | ----------- | +| SD3 | BI-V150 | 4.34 | 8.68 | + +## Reference + +- [diffusers](https://github.com/huggingface/diffusers)