# lancedb **Repository Path**: liunix61/lancedb ## Basic Information - **Project Name**: lancedb - **Description**: LanceDB 是一个用于矢量搜索的开源数据库,采用持久存储构建,极大地简化了嵌入的检索、过滤和管理 - **Primary Language**: Python - **License**: Apache-2.0 - **Default Branch**: main - **Homepage**: https://www.oschina.net/p/lancedb - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2023-07-26 - **Last Updated**: 2023-07-26 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README

LanceDB Logo **Developer-friendly, serverless vector database for AI applications** DocumentationBlogDiscordTwitter

LanceDB Multimodal Search


LanceDB is an open-source database for vector-search built with persistent storage, which greatly simplifies retrevial, filtering and management of embeddings. The key features of LanceDB include: * Production-scale vector search with no servers to manage. * Store, query and filter vectors, metadata and multi-modal data (text, images, videos, point clouds, and more). * Support for vector similarity search, full-text search and SQL. * Native Python and Javascript/Typescript support. * Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure. * Ecosystem integrations with [LangChain 🦜️🔗](https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lanecdb.html), [LlamaIndex 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way. LanceDB's core is written in Rust 🦀 and is built using Lance, an open-source columnar format designed for performant ML workloads. ## Quick Start **Javascript** ```shell npm install vectordb ``` ```javascript const lancedb = require('vectordb'); const db = await lancedb.connect('data/sample-lancedb'); const table = await db.createTable('vectors', [{ id: 1, vector: [0.1, 0.2], item: "foo", price: 10 }, { id: 2, vector: [1.1, 1.2], item: "bar", price: 50 }]) const query = table.search([0.1, 0.3]); query.limit = 20; const results = await query.execute(); ``` **Python** ```shell pip install lancedb ``` ```python import lancedb uri = "data/sample-lancedb" db = lancedb.connect(uri) table = db.create_table("my_table", data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0}, {"vector": [5.9, 26.5], "item": "bar", "price": 20.0}]) result = table.search([100, 100]).limit(2).to_df() ``` ## Blogs, Tutorials & Videos * 📈 2000x better performance with Lance over Parquet * 🤖 Build a question and answer bot with LanceDB