# MinerU
**Repository Path**: open-data-lab/MinerU
## Basic Information
- **Project Name**: MinerU
- **Description**: MinerU是一款将PDF转化为机器可读格式的工具(如markdown、json),可以很方便地抽取为任意格式。
- **Primary Language**: Python
- **License**: AGPL-3.0
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 53
- **Forks**: 25
- **Created**: 2025-05-23
- **Last Updated**: 2025-09-21
## Categories & Tags
**Categories**: doc-tools
**Tags**: None
## README
[](https://github.com/opendatalab/MinerU)
[](https://github.com/opendatalab/MinerU)
[](https://github.com/opendatalab/MinerU/issues)
[](https://github.com/opendatalab/MinerU/issues)
[](https://pypi.org/project/mineru/)
[](https://pypi.org/project/mineru/)
[](https://pepy.tech/project/mineru)
[](https://pepy.tech/project/mineru)
[](https://mineru.net/OpenSourceTools/Extractor?source=github)
[](https://www.modelscope.cn/studios/OpenDataLab/MinerU)
[](https://huggingface.co/spaces/opendatalab/MinerU)
[](https://colab.research.google.com/gist/myhloli/a3cb16570ab3cfeadf9d8f0ac91b4fca/mineru_demo.ipynb)
[](https://arxiv.org/abs/2409.18839)
[](https://deepwiki.com/opendatalab/MinerU)

[English](README.md) | [简体中文](README_zh-CN.md)
🚀MinerU 官网入口→✅ 免装在线版 ✅ 全功能客户端 ✅ 开发者API在线调用,省去部署麻烦,多种产品形态一键get,速冲!
👋 join us on Discord and WeChat
# 更新记录
- 2025/09/20 2.5.3 发布
- 依赖版本范围调整,使得Turing及更早架构显卡可以使用vLLM加速推理MinerU2.5模型。
- `pipeline`后端对torch 2.8.0的一些兼容性修复。
- 降低vLLM异步后端默认的并发数,降低服务端压力以避免高压导致的链接关闭问题。
- 更多兼容性相关内容详见[公告](https://github.com/opendatalab/MinerU/discussions/3547)
- 2025/09/19 2.5.2 发布
我们正式发布 MinerU2.5,当前最强文档解析多模态大模型。仅凭 1.2B 参数,MinerU2.5 在 OmniDocBench 文档解析评测中,精度已全面超越 Gemini2.5-Pro、GPT-4o、Qwen2.5-VL-72B等顶级多模态大模型,并显著领先于主流文档解析专用模型(如 dots.ocr, MonkeyOCR, PP-StructureV3 等)。
模型已发布至[HuggingFace](https://huggingface.co/opendatalab/MinerU2.5-2509-1.2B)和[ModelScope](https://modelscope.cn/models/opendatalab/MinerU2.5-2509-1.2B)平台,欢迎大家下载使用!
- 核心亮点
- 极致能效,性能SOTA: 以 1.2B 的轻量化规模,实现了超越百亿乃至千亿级模型的SOTA性能,重新定义了文档解析的能效比。
- 先进架构,全面领先: 通过 “两阶段推理” (解耦布局分析与内容识别) 与 原生高分辨率架构 的结合,在布局分析、文本识别、公式识别、表格识别及阅读顺序五大方面均达到 SOTA 水平。
- 关键能力提升
- 布局检测: 结果更完整,精准覆盖页眉、页脚、页码等非正文内容;同时提供更精准的元素定位与更自然的格式还原(如列表、参考文献)。
- 表格解析: 大幅优化了对旋转表格、无线/少线表、以及长难表格的解析能力。
- 公式识别: 显著提升中英混合公式及复杂长公式的识别准确率,大幅改善数学类文档解析能力。
此外,伴随vlm 2.5的发布,我们对仓库做出一些调整:
- vlm后端升级至2.5版本,支持MinerU2.5模型,不再兼容MinerU2.0-2505-0.9B模型,最后一个支持2.0模型的版本为mineru-2.2.2。
- vlm推理相关代码已移至[mineru_vl_utils](https://github.com/opendatalab/mineru-vl-utils),降低与mineru主仓库的耦合度,便于后续独立迭代。
- vlm加速推理框架从`sglang`切换至`vllm`,并实现对vllm生态的完全兼容,使得用户可以在任何支持vllm框架的平台上使用MinerU2.5模型并加速推理。
- 由于vlm模型的重大升级,支持更多layout type,因此我们对解析的中间文件`middle.json`和结果文件`content_list.json`的结构做出一些调整,请参考[文档](https://opendatalab.github.io/MinerU/zh/reference/output_files/)了解详情。
其他仓库优化:
- 移除对输入文件的后缀名白名单校验,当输入文件为PDF文档或图片时,对文件的后缀名不再有要求,提升易用性。